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Data sources for measuring population mobility
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The Use of Census Migratibn Data to Approximate
Human Movement Patterns across Temporal Scales

Amy Wesolowski'*, Caroline O. Buckee®?, Deepa K. Pindolia®*®, Nathan Eagle®’, David L. Smith®®,
Andres J. Garcia®®, Andrew J. Tatem*>-®?
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Census-derived migration data as a tool @
for informing malaria elimination policy

Nick W. Ruktanonchai'?’, Darlene Bhavnani®, Alessandro Sorichetta'”, Linus Bengtsson®*, Keith H. Carter’,
Roberto C. Cérdoba®, Arnaud Le Menach?, Xin Lu®#, Erik Wetter?/, Elisabeth zu Erbach—Schoemberg"2
and Andrew J. Tatem'%®

Tatem, Int Health 2015; Ruktanonchai et al, IJHG 2018; Lai et al, JTM 2019; Tatem et al, IOM Practitioners Handbook 2023
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Sources of data for measuring population mobility
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Sources of data for measuring population mobility
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Sources of data for measuring population mobility
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Mobile phone call detail records (CDRs)

Call routed through
nearest tower

User makes a call
from location X

Network operator records time
and tower of call for billing

User travels toY
and makes a call
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Sources of data for measuring population mobility
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Smartphone/app location histories
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Case studies: mobile phone data-based
population and mobility mapping



MObile phone-derived daytime calls are ignored most frequently used night time

] tower determines location
home locations / C C
days |——— ——
user 1 m [
Signal towers/locations
user 2
[1] 1L
@ user 3 T im ]—>
user 4 [ Ijl
user 5 IHill—
user counts 401 221 131
for each tower nights without calls/texts

are assigned closest

known location
18
Deville et al (2014); zu Erbach-Schoenberg et al (2016); Lai et al (2019)



Dynamic population mapping using mobile phone data

ab.c1 catherine Linard“®'?2, Samuel Martin®, Marius Gilbert“?, Forrest R. Stevens', Andrea E. Gaughan',
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Dynamic population mapping using mobile phone data

Pierre Deville®™“', Catherine Linard“®'?, Samuel Martin®, Marius Gilbert“®, Forrest R. Stevens', Andrea E. Gaughan',

Vincent D. Blondel®, and Andrew J. Tatem9"
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Internal
displacements
observed from CDRs

Following the Haiti
earthquake (2010)

About 40% of displaced phone users
left Port-au-Prince and the areas
affected by the earthquake to stay at
many different destinations across
Haiti (up to 100km away) in the week
following the earthquake.

And about 60% of displaced phone
users remained within 10 km of their
home (not shown).
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Rapid and Near Real-Time Assessments of
Population Displacement Using Mobile Phone Data
Following Disasters: The 2015 Nepal Earthquake

Robin Wilson 1, Elisabeth Zu Erbach-Schoenberg ', Maximilian Albert 2, Daniel Power 3,

Simon Tudge 3, Miguel Gonzalez 2, Sam Guthrie #, Heather Chamberlain ', Christopher Brooks T,
Christopher Hughes 5 Lenka Pitonakova 3, Caroline Buckee ©, Xin Lu 7, Erik Wetter &,

Andrew Tatem ', Linus Bengtsson °
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Understanding mobility patterns in climate

stressed regions
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© Tile level change from 16 to 14

We have updated our tile-based datasets to Bing tile level 14 to provide better coverage in sparsely populated areas.

® | counts per region, calculated by dividing the difference by the

Table preview Map About Documentation
+
.
-
Percent change
: M 5956
29.78
0.00
-29.78
Nasirabad [ ]
Percent change 2423 M 5956

©Q 1600 -

Y |

Nasirabad X
1.32¢-3

Baseline

Average number of users who have Location Services enabled on
their Facebook mobile app and were present in the region during
the baseline period prior to the event

4.7K

Users during crisis

The number of people using the Facebook app who have turned on
the Location Services device setting on their mobile ice and are
present in the region during the 8-hour time window beginning at
date/time (date_time)

3.6K

Difference between baseline and crisis

The number of people using the Facebook app who have turned on
the Location Services device setting on their mobile device and are
present during the crisis minus the average number of users
present during the baseline period

-1.1K

Percent change

-24.2

Percent change in the Facebook Location Services user population

baseline (plus a small value, usually 1)

Lu X et al. Global Environmental Change 2016.
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Mobile phone data for migration statistics

ARTICLE
hitps://doi.org/10.1057/541599-019-0242-9 OPEN

Exploring the use of mobile phone data for national
migration statistics

Shengjie Lai 123 Elisabeth zu Erbach-Schoenberng, Carla Pezzulo!, Mick W. Ruktanonchai'2, Y
Alessandro Sorichetta?, Jessica Steele!, Tracey LiZ, Claire A. Dooley'? & Andrew J. Tatem'?2 \

Mobile phone data:

* Dataset of 72 billion anonimized CDRs
between October 2010 and April 2014
from MTC, the leading network operator
in Namibia with a 76% market share. (

* Processed to match as closely as possible
time period and categories/geography of
census questions in 2011

— 30000+
—— 10000-30000

——— 5000-10000

—— 3000-5000

2000-3000

1000-2000

Lai S et al. Nature Palgrave Communications 2019



CDR-derived user locations

* Location of a mobile/SIM user was defined by

the location of the routing mobile phone Ce?SUS

tower, spatially aggrggatgd to regional level to CDRs Oct 2010 2011

match the census migration data. | |
 Home location: defined as the region where home location

the user was observed most frequently during
12 months at nighttime

* Migrant user: A mobile phone user changed
home locations between two years.



Highly correlation between CDR and census-derived
migrations
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Updating migration statistics across years
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|dentifying counter-urbanisation using Facebook's user counts

In Belgium and Thailand, rural residents (night-time user
counts) increased by 1.80% and 2.14%, respectively,
from March 2020 to May 2022, while urban residents
decreased by 3.08% and 5.04%. However, the counter-
urbanisation in Thailand appears to be transitory.
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Seasonal movements
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ARTICLE

OPEN

Multinational patterns of seasonal asymmetry in
human movement influence infectious disease
dynamics

Amy Wesolowski‘, Elisabeth zu Erbach-Schoenbergz'SJ Andrew 1. Tatem2'3, Christopher Loureng02‘4,
Cecile V\buuds, Vivek Charus, Nathan Eagleﬁ, Kenth Enge-Monsen® 7, Taimur Qureshi?,

Caroline O. Buckee®3 & C.J.E. Metcalf® %0



Article | Open Access | Published: 28 July 2021

Practical geospatial and sociodemographic predictors
of human mobility
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Ruktanonchai et al (2021) Nature Sci Reports; Lai et al (2021) Nature Sci Data



Article | Open Access | Published: 28 July 2021

Practical geospatial and sociodemographic predictors

of human mobility

Change in mobility for Temporal fixed effects
component

district / in month ¢
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temporally varying
covariates
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component

Spatial and temporal
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Ruktanonchai et al (2021) Nature Sci Reports; Lai et al (2021) Nature Sci Data




Seasonal mobility’s health impacts:

Health metrics
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Fig. 4 Seasonal changes in population numbers: Difference in predicted population number between November and December 2011 for each
health district. Insets show predicted population number for selected health districts over the whole study period
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Dynamic denominators: the impact of
seasonally varying population numbers on
disease incidence estimates

Elisabeth zu Erbach—Schoeﬂbergm‘@, Victor A. Alegaﬂau, Alessandro Sorichetta'?, Catherine Linard™,
Christoper Lourengo1‘5, Nick W. Ruktanonchai', Bonita Graupeﬁ, Tomas J. Bird"?, Carla Pezzulo'?,
Amy Wesolowski®”® and Andrew J. Tatem'*?
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Seasonal mobility’s health impacts:
Intervention/Healthcare demands
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Erbach-Schoenberg et al (2016) Pop Health Metrics; Alegana et al (2012) IJHG



Case studies: Assessing the spread risk and
intervention effects for emerging infectious diseases



Spread of infectious diseases
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Google COVID-19 Community Mobility Reports

https://covid19.apple.com/mobility https://www.google.com/covid19/mobility/

& Maps — T P S
3 il b5 B @

Mobility Trends Reports See how your community is moving around
Learn about COVID-19 mobility trends. Reports differently due to COVID-19

are published daily and reflect requests for

d Irections In Apple Maps' Prwacy IS_ one Of our As global communities respond to COVID-19, we've heard from public health officials that the same type of aggregated,
core ValueS, so Ma Ps doesn’t associate your data E anonymized insights we use in products such as Google Maps could be helpful as they make critical decisions to

with your Apple ID, and Apple doesn't keep a combat COVID-19.

E T
hlStOl‘y Of Where YOU ve been' These Community Mobility Reports aim to provide insights into what has changed in response to policies aimed at
combating COVID-19. The reports chart movement trends over time by geography, across different categories of
places such as retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential.

FACEBOOK Data for Good Public Datasets Tools for Nonprofits Impact Approach

https://dataforgood.fb.com/

We use data to address some of the
world’s greatest humanitarian issues.

Flattening the COVID-19 curve is a challenge
that takes all of us. People are distancing to
protect their communities, healthcare
workers are saving lives on the front lines,
and public health systems are looking to put
the right guidelines in place. To do that, they
need better information on whether
preventive measures are working and how
the virus may spread. We offer maps on
population movement that researchers and
nonprofits are already using to understand
the coronavirus crisis, using aggregated data
to protect people’s privacy.
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World Pop ABOUT METHODS & TOOLS NEWS DATA CONTACT

January 25th, 2020 (Lunar New Year's Day)
Preliminary risk analysis of 2019 novel coronavirus spread within and beyond China

Shengjie Lai", Isaac I. Bogoch?, Alexander Watts>*, Kamran Khan®3# Andrew Tatem'" . .
= - Updated version on MedArxiv
Updated on February 5th, 2020

'WorldPop, School of Geography and Environmental Science, University of Southampton, UK

2Department of Medicine, University of Toronto, Toronto, Canada
3Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada Download a PDF version in English

4Bluedot, Toronto, Canada
"Email: Shengjie Lai@soton.ac.uk; AJ.Tatem@soton.ac.uk Download a PDF version in Chinese
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How has CQ\[ID|-1'9. spread within China and be\f\-iv-éé,;riitinents’?
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Relative netflow

Relative netflow
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Domestic destinations of 5 million travellers from Wuhan
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in Wuhan City and Hubei Province before COVID-19 COVID-19 infections from Wuhan during the LNY migration

Green/Red colour: 2 weeks before/since LNY’s Day based on the population movement data
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nternational destinations of travellers from China
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Variants of concern (VOCs)
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Exploring international travel patterns
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Estimated introductions between the countries for different time
intervals throughout the SARS-CoV-2 evolutionary history

June 15" - August 15" August 15" - October 30"

February 1% - June 15™

15 June 2020: many EU and Schengen-area countries opened their borders to other countries
15 August 2020: before which the majority of holiday return travel is expected for many countries



Estimated geographical origin of viral
influx of lineage B.1.177 over the
summer in Europe
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The effects of non-pharmaceutical interventions (NPIs) in
containing COVID-19 at the early stage

Domestic mobility changes during the first wave of pandemic
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Mainland China used Baidu data, taking Jan 5 — 22, 2020 as a baseline.

All other 134 countries/territories/areas used Google data, taking Jan 5 — Feb 15, 2020 as a baseline

Lai S et al. Engineering 2021.
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Domestic and international mobility trends 2
in the United Kingdom during the COVID-19
pandemic: an analysis of facebook data

Harry E. R. Shepherd', Florence S. Atherden?, Ho Man Theophilus Chan?, Alexandra Loveridge? and
Andrew J. Tatem*' ®
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Fig. 4 Relative changes in the average population density of daytime Facebook users within London under different mobility restrictions. A
Lockdown one (05/04/2020-12/05/2020). B Summer 2020 (05/07/2020-31/08/2020). € Lockdown two (05/11/2020—01/12/2020). D Lockdown
three (05/01/2021-08/03/2021). Time period is between 08:00—16:00 UTC. Data does not coincide with the beginning of lockdown one as data



Integrating mobility data and covariates for assessing
intervention effects

bty byt gf
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Statistical models | PR t><
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Bayesian inference
Machine learning

Mobility data helps define rates of movement
within and between patches




NPI effectiveness + Coordinated strategies?

nature Science RESEARCH ARTICLES

Cite as: N. W. Ruktanonchai e al.. Science
10.1126/science.abe3096 (2020).

Assessing the impact of coordinated COVID-19 exit

Article | Published: 04 May 2020

Effect of non-pharmaceutical interventions to

Ll
: i . strategies across Europe
contain COVID-19 in China 5 P
N. W. Ruktanonchai**t, J. R. Floydt, S. Lai**, C. W. Ruktanonchai'f, A. Sadilek®, P. Rente-Lourenco*,
Shengjie Lai r Nick W. Ruktanonchai ' Liangcai Zhou, Olivia Prosper, Wei Luo, X. Ben?, A. Carioli!, J. Gwinn?®, J. E. Steele!, O. Prosper®, A. Schneider?, A. Oplinger?®, P. Eastham?, A. J. Tatem'

Jessica R. Floyd, Amy Wesolowski, Mauricio Santillana, Chi Zhang, Xiangjun Du,

Hongjie Yu & Andrew J. Tatem Probability -

.00001 .0001 001 .01 A

150001 — Combined interventions — Combined interventions
=— Without case early detection & isolation =— Without inner-city contact reduction
20000
10000
5000 10000+
0 0

Dec  Jan Feb Mar Apr May Dec  Jan Feb Mar Apr May




nature

ARTICLES

human behaViour htps://doi.org/101038/541562-021-01063-2

mHealth for COVID-19 interventions

Integrated vaccination and physical distancing
interventions to prevent future COVID-19 waves in

Mobile phone-derived contact patterns in the form of spatiotemporal co-presence
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Mobility-based spatial sampling improves detection of

emerging infections
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Case fraction in Guangzhou (%)

Affected—community fraction in Guangzhou (%)

Mobility-based spatial sampling improves detection of emerging
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Limitations & challenges



Preserving confidentiality

T

Data Protection Act 2018

AR i- \L P -/ -
A fesSme
Operators Call Detail Records’ (CDRs) We conduct analyses under operator
including low-resolution location data .
. . supervision, anonymous raw data
(nearest tower location) anonymized on | behing tor f !
separate server hosted by operator. always benind operator firewa Aggregated mobility estimates are
/ exported and made open access - can be
used with other mobility estimates,
Mobile operator firewall epidemiological data

Raw data never leaves mobile operator’s system to avoid any privacy, commercial concerns.
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Smartphone/App-based data for measuring mobility

RESEARCH Open Access

Using Google Location History data
to quantify fine-scale human mobility

Nick Warren Ruktanonchai'' ®, Corrine Warren Ruktanonchai'?, Jessica Rhona Fond"2 and Andrew J. Tatem'*
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Smartphone/App-based data for measuring mobility

Comparing mobility datasets for measles outbreak
modelling in Zambia
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Bias introduced by data processing

Actual mobility Raw mobility data Processed datasets Downstream tasks
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« Discovery of universal
human behavior laws

« Prediction of visitation to POI

- Mobility flow generation

Pre-processing Benchmarking
Mobility data pre-processing methods

The need for fit-for-purpose and standardised benchmark datasets
for reproducible, fair and inclusive mobility research.
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Yabe, T et al. Nature Comput Sci (2024).
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migration statistics
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* Mobile device-based geolocation data,
covering a wide range of spatial scales and
temporal frequencies, are increasingly useful
and available for measuring human mobility
and population dynamics.

* These datasets from different sources have
been used in various applications such as
disease control, crisis response,
demographics, and development planning.

* Itis important to consider privacy, data bias,
and standardisation in mobile phone data
processing, integration and modelling.

59




WoEBS T ik

E-mail: Shengjie.Lai@soton.ac.uk www.worldpop.org



