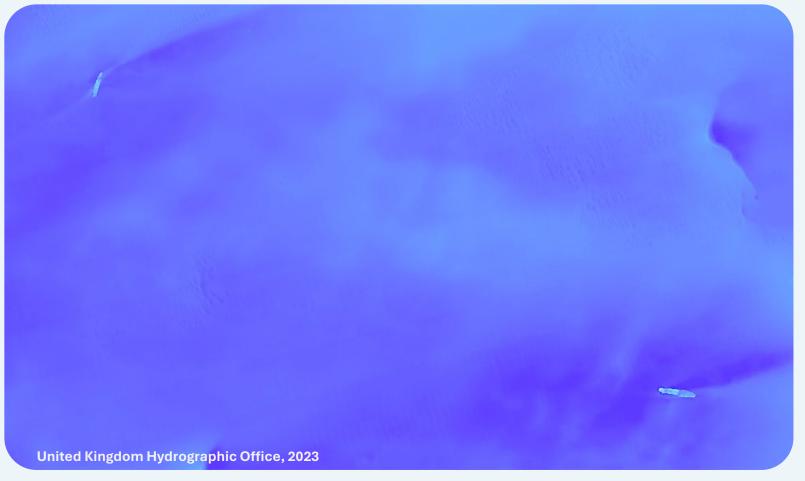
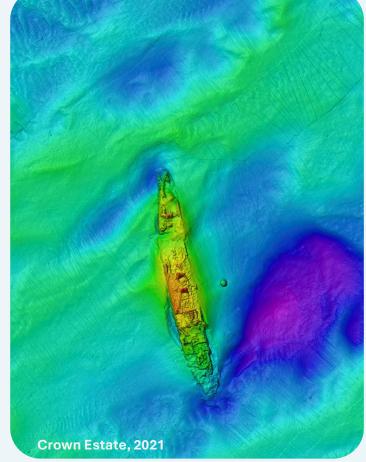
Computer Vision in Maritime Archaeology: Machine Learning for Shipwreck Detection and Analysis





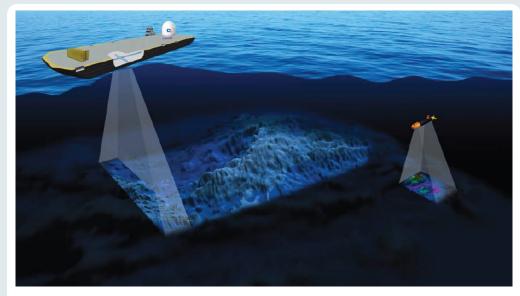
Supervisors: Prof Fraser Sturt, Dr Crystal El Safadi, Dr Antonia Marcu

Cal T. Pols

LEVERHULME TRUST_____

Background and Research Rationale

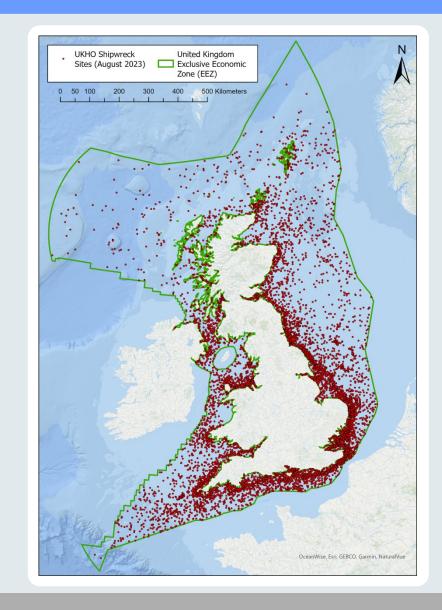
- Why use Machine Learning?
- Remote Sensing 'Data Explosion' (Bennett, Cowley, De Laet, 2014)
- High-resolution, 'Big' marine datasets (Jakobssen *et al.*, 2017; Andreou *et al.*, 2022)
- Seabed 2030 Project (GEBCO-Nippon Foundation)
- Archaeological Implications
- Imperative for accurate quantification and understanding of underwater cultural heritage (McCartney, 2022)



Jakobsson et al., 2017: 18

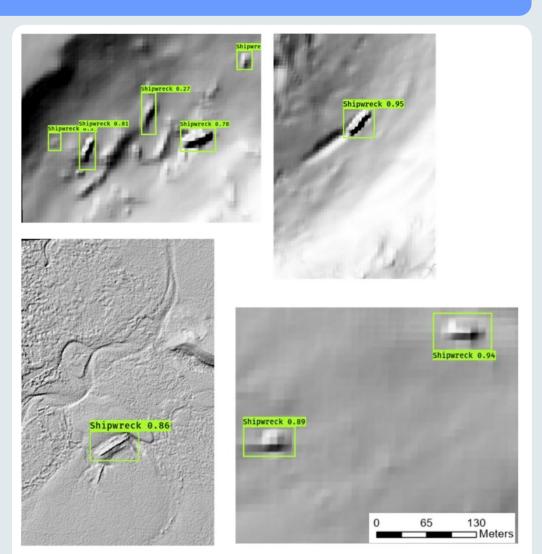
Background and Research Rationale

- Why use Machine Learning?
- Remote Sensing 'Data Explosion' (Bennett, Cowley, De Laet, 2014)
- High-resolution, 'Big' marine datasets (Jakobssen *et al.*, 2017; Andreou *et al.*, 2022)
- Seabed 2030 Project (GEBCO-Nippon Foundation)
- Archaeological Implications
- Imperative for accurate quantification and understanding of underwater cultural heritage (McCartney, 2022)



Machine Learning in Maritime Archaeology

- Fewer Studies in Maritime Contexts
- Applications for Shipwreck detection
- Closest comparable study Character et al.,
 2019



Character et al., 2021: 5

Current Research [Paper 1]

Research Question

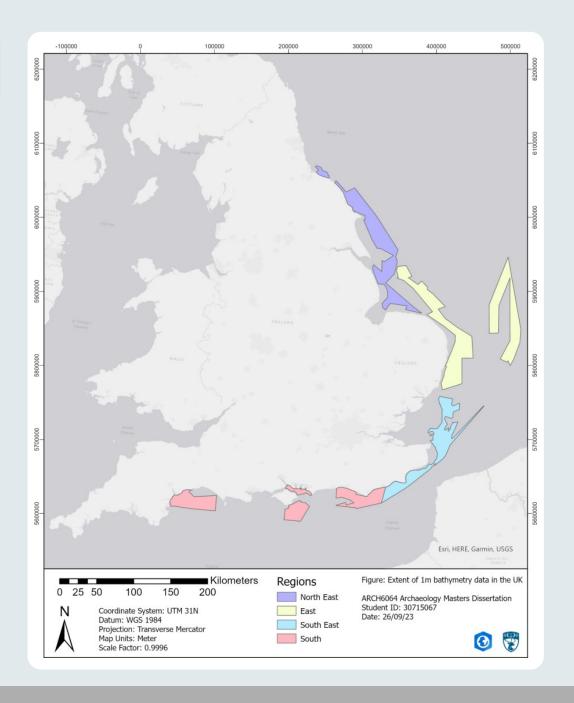
How effective are machine learning methods for identifying shipwreck sites across large areas of seabed using bathymetry data?

- 1. Utility and Suitability of Ready-Made Tools for Shipwreck Detection
 - Machine Learning Tools for Object Detection (Character et al., 2021)
 - Topographic Approach (Inverse Depression Analysis; Davis et al., 2020)
- 2. Open-Access Data
 - Bathymetry Data (Seabed Topography)
 - United Kingdom continental shelf
- 3. Feasibility of semi-automated methods for maritime archaeological assessments
 - Time, Cost, but also *Labour*-effective

Data Sources

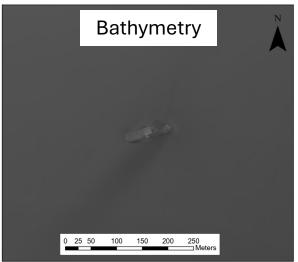
- Admiralty Bathymetry, 1m resolution (4,664 km²)
- Training/ Testing (Cross-Validation)
- UKHO Wrecks & Obstructions Database

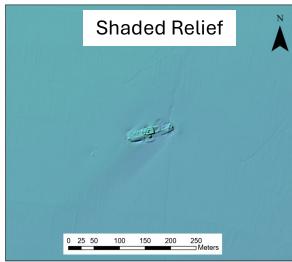
Region		No. of Training Images	No. of Shipwrecks
North East	(NE)	2,611	285
East	(E)	3,090	340
South East	(SE)	3,255	389
Total		8,956	1,014

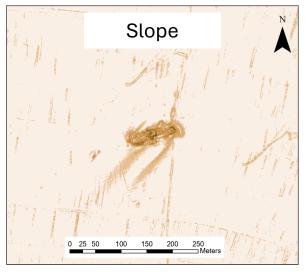


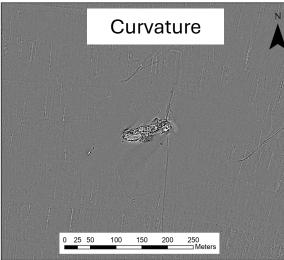
Visualising Shipwrecks

- Importance of Visualisation to improve detection
- Variation of Shipwreck Sites
 - Preservation Levels
 - Seabed Sediment
 - Seabed Bedforms
- = Challenges for semi-automated detection



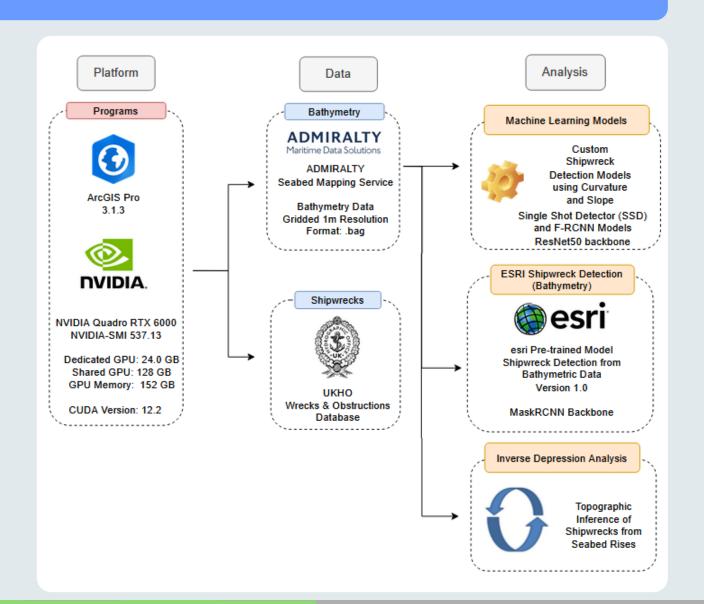






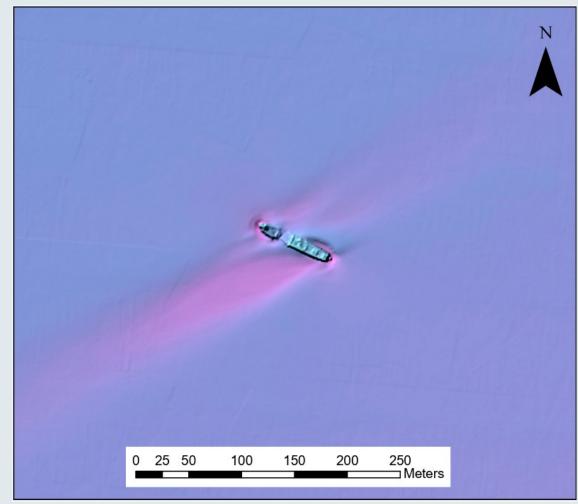
Methodology

- 1. Custom Machine Learning
 - Hillshade, Curvature, Slope
 - Single Shot Detector and F-RCNN
- 2. ESRI Pre-trained Machine Learning Model
 - Shaded Relief (Hillshade)
 - Mask RCNN
- 3. Topographic Inference Approach
 - Inverse Digital Surface Model (DSM)
 - Sinkhole Extraction Toolbox (Wu et. al., 2016; Davis et al., 2020)

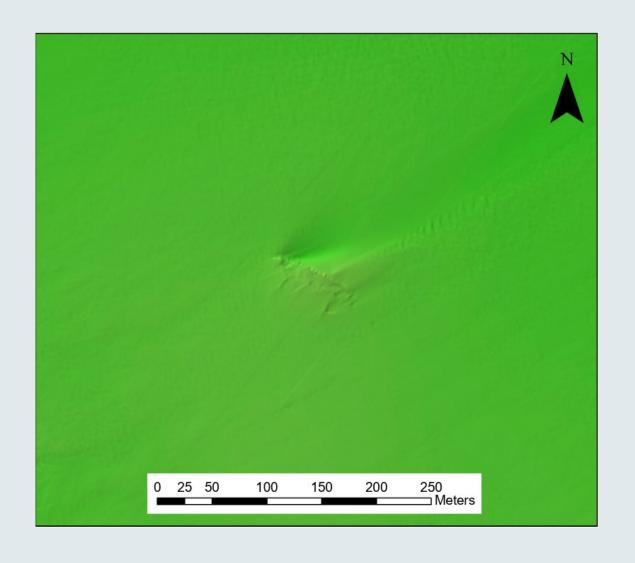


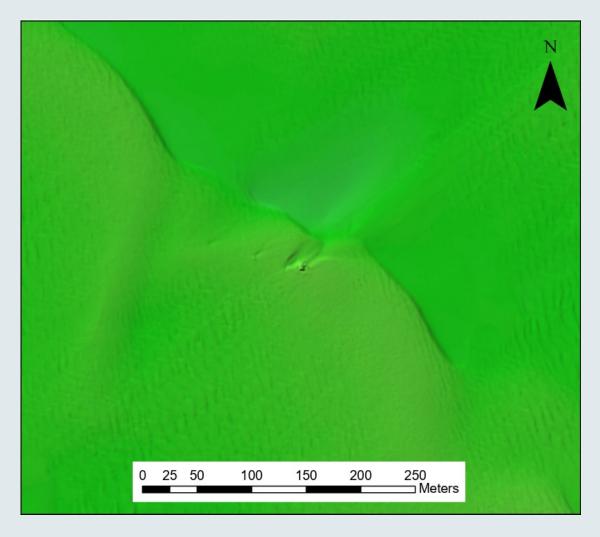
What does a shipwreck look like?





What does a shipwreck look like?





Preliminary Results – Custom Machine Learning Models

Hillshade

Possible (All)	SSD	F-RCNN
Recall	0.74	0.36
Precision	0.02	0.45
F1 Score	0.04	0.40

Probable	SSD	F-RCNN
Recall	0.91	0.71
Precision	0.01	0.38
F1 Score	0.02	0.49

Curvature

Possible (All)	SSD	F-RCNN
Recall	0.68	0.44
Precision	0.11	0.35
F1 Score	0.18	0.39

Probable	SSD	F-RCNN
Recall	0.94	0.85
Precision	0.06	0.29
F1 Score	0.12	0.43

Confidence Threshold: 0.6

SSD w/ Resnet50 F-RCNN w/ Resnet34 Testing Region – South

No. Possible (All) Shipwrecks = 253

No. Probable Shipwrecks = 107

Training Epochs: 50

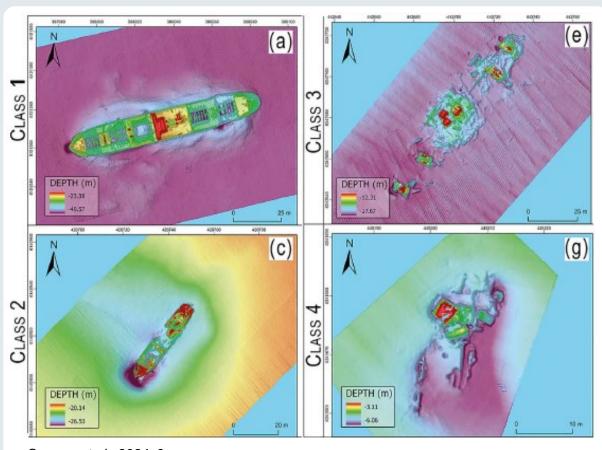
No. Training Images: 8,956

No. Total Training Shipwrecks: 1,014

Training Shipwrecks (Possible): 441
Training Shipwrecks (Probable): 573

Future Work

- 1. Shipwreck Preservation (Inter-site)
 - ML assessment of preservation levels
 - Potential for baseline monitoring
- 2. Shipwreck Type (Inter-site)
 - ML assessment of vessel type
 - Date range estimate
- 3. Intra-Site Level Analysis
 - Very high-resolution datasets (3D Models)
 - Applications for specific feature extraction (boilers, hull, etc.)



Gregory et al., 2024: 8

References

Andreou, G.M., Nikolaus, J., Westley, K., El Safadi, C., Blue, L., Smith, A. and Breen, C. (2022) 'Big Data in Maritime Archaeology: Challenges and Prospects from the Middle East and North Africa', *Journal of Field Archaeology*, 47(3), pp. 131–148. Available at: https://doi.org/10.1080/00934690.2022.2028082.

Bennett, R., Cowley, D. and De Laet, V. (2014) 'The data explosion: tackling the taboo of automatic feature recognition in airborne survey data', *Antiquity*, 88(341), pp. 896–905. Available at: https://doi.org/10.1017/S0003598X00050766.

Character, L., Ortiz JR, A., Beach, T. and Luzzadder-Beach, S. (2021) 'Archaeologic Machine Learning for Shipwreck Detection Using Lidar and Sonar', *Remote Sensing*, 13(9), p. 1759. Available at: https://doi.org/10.3390/rs13091759.

Davis, D.S., Buffa, D.C., and Wrobleski, A.C. (2020) 'Assessing the Utility of Open-Access Bathymetric Data for Shipwreck Detection in the United States', *Heritage*, 3(2), pp. 364-383. Available at: https://doi.org/10.3390/heritage30220022.

Gregory, D., Dam, M., Majcher, J., Matthiesen, H., Andersen, G.N. and Quinn, R. (2024) 'Using Open-Data Portals, Remote Sensing and Computational Modelling to Investigate Historic Wreck Sites and Their Environments: 45 Years on from Muckelroy', *International Journal of Nautical Archaeology*, 0(0), pp. 1–18. Available at: https://doi.org/10.1080/10572414.2024.2320774.

Jakobsson, M., Allen, G., Carbotte, S.M., Falconer, R., Ferrini, V. and Marks, K. (2017) *The Nippon Foundation - GEBCO - Seabed 2030: Roadmap for Future Ocean Floor Mapping*. Available at: https://www.gebco.net/documents/seabed_2030_roadmap_v10_low.pdf (Accessed: 25 September 2023).

McCartney, I. (2022) Echoes from the Deep. Inventorising shipwrecks at the national scale by the application of marine geophysics and the historical text. https://www.sidestone.com/books/echoes-from-the-deep (Accessed: 15 April 2024).

Wu, Q., Deng, C., and Chenz, Z. (2016) 'Automated delineation of karst sinkholes from LiDAR-derived digital elevation models', *Geomorphology*, 266, pp. 1-10. Available at https://doi.org/10.1016/j.geomorph.2016.0.006.