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Infrastructure details are on cm to m scales
Capability drivers: Inspection



529 subsea cables  
1.8million km total length 
95% of global data

https://submarine-cable-map-2023.telegeography.com/
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Understanding the seafloor at scale“
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Figure 2: Autoencoder Training Based on Location Information

4 Applications of feature learning

In this section, two applications of feature learning are presented; clustering and image search. Since the
proposed feature learning is designed for compensating the problems in seafloor imagery learning (no or less
annotations, requirement for quick learning and analysing), clustering and image search are practical appli-
cations which do not require any further information for applying. Note that the georeference information
are not necessary once the autoencoder is trained. As shown in EQ, the aim of embedding georeference
information is not mapping absolute coordinates of imagery to latent representation space, but controlling
the distribution of the mapping result.

4.1 Clustering

The autoencoder trained with the method presented in section 3.2.2 is considered as embedding key informa-
tion of original data x into latent representation h and dim(h) = 16 is low enough, it should be acceptable
to apply clustering methods directly to this latent representation space. As a requirement for semantic
interpretation, it would be preferable that the clustering methods needs less amount of prior knowledge of
the data set. As mentioned in section 2.2, majority of popular clustering methods require specifying the
number of clusters k in data as a prior knowledge. However, for semantic interpretation in unsupervised
manner, it is preferable that the number of clusters k in the data is also estimated automatically. Therefore
this work applies a nonparametric Bayesian approach, which automatically estimates k, to the clustering of
latent representation ((Blei et al., 2006)).
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the data set. As mentioned in section 2.2, majority of popular clustering methods require specifying the
number of clusters k in data as a prior knowledge. However, for semantic interpretation in unsupervised
manner, it is preferable that the number of clusters k in the data is also estimated automatically. Therefore
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• 21+day, 1013km shore launch AUV mission success

• Total 21.4 kWh (~2L diesel) instead of 60,000L

➡ 813km transit (14days, 15.0kWh 70% tot.) 

➡ 200km survey (4days, 6.4kWh 30% tot.)

• Over-horizon awareness and re-tasking 
demonstrated based on data quality control metrics



Still talking about  
➡ small numbers of slow robots  
➡ in a big ocean

Resolution and cover tradeoffs between modalities

Figure 2: Autoencoder Training Based on Location Information

4 Applications of feature learning

In this section, two applications of feature learning are presented; clustering and image search. Since the
proposed feature learning is designed for compensating the problems in seafloor imagery learning (no or less
annotations, requirement for quick learning and analysing), clustering and image search are practical appli-
cations which do not require any further information for applying. Note that the georeference information
are not necessary once the autoencoder is trained. As shown in EQ, the aim of embedding georeference
information is not mapping absolute coordinates of imagery to latent representation space, but controlling
the distribution of the mapping result.

4.1 Clustering

The autoencoder trained with the method presented in section 3.2.2 is considered as embedding key informa-
tion of original data x into latent representation h and dim(h) = 16 is low enough, it should be acceptable
to apply clustering methods directly to this latent representation space. As a requirement for semantic
interpretation, it would be preferable that the clustering methods needs less amount of prior knowledge of
the data set. As mentioned in section 2.2, majority of popular clustering methods require specifying the
number of clusters k in data as a prior knowledge. However, for semantic interpretation in unsupervised
manner, it is preferable that the number of clusters k in the data is also estimated automatically. Therefore
this work applies a nonparametric Bayesian approach, which automatically estimates k, to the clustering of
latent representation ((Blei et al., 2006)).
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