Mapping forcibly displaced people at high-resolution using machine learning and satellite-derivative datasets Sarchil Qader¹, Alexey Noskov¹, Attila Lazar¹, Edith Darin², Ahmadou Dicko³, Hisham Galal³, Hyunju Park³, Rebeca Moreno Jimenez³, Andrew J Tatem¹ ¹WorldPop; ²University of Oxford; ³UNHCR Southampton Geospatial Summer School 12th September 2024 ## **WorldFop** ## Southampton Applied research and implementation group Open data, open peer-reviewed methods, co-development, capacity strengthening Mapping small area demographics and dynamics for low and middle income countries Gridded population datasets used by UN agencies, Governments, DHIS2 Major application areas in epidemiology, RMNCAH, childhood vaccination ## Uses of small area demographic data - Planning elections - Calculating GDP - Local governance - Traffic planning - Financial services - Delivering utilities - Agricultural subsidies - Taxation - Land use management - Energy strategies - Health system planning - Supply chain management - Health metrics - Meeting SDGs - Controlling infectious diseases - Modelling disease spread and intervention effects ## Background - □ At the end of 2023, an estimated 117.3 million people worldwide were forcibly displaced due to persecution, conflict, violence, etc - □ According to UNHCR report, forced displacement has continued to increase in the first four months of 2024 and by the end of April 2024 is likely to have exceeded 120 million. ## Forced displacement data challenge and intervention - ☐ High-quality baseline population data disaggregated down to local levels are fundamental for many applications, including needs assessment, planning and delivery of public services and response to disasters. - ☐ Most of the short-term population change in many current and ongoing crises is caused by forced displacement. Forced displacement data, however, are complicated and often difficult to align with other sources of population, demographic, and humanitarian data. - □ While datasets from Government and UN agencies such as UNHCR, OCHA, IDMC and IOM provide valuable insights, their granularity is often limited to administrative levels 1 or 2. - ☐ This lack of detailed data poses significant challenges for policymakers, urban planners, national survey and researchers. - ☐ Failure to reach displaced people will impede the Sustainable Development Goal's (SDGs) advancement and have negative effects on the peace and security of nations ## "Top down" "I trust these subnational provincelevel projections, but need finer scale estimates" "I need gridded outputs that match my district unit totals" "The last national census was 1984 so don't trust that data, but I need small area population data and do have some recent sample enumeration data" "We have conducted our census, but could not access certain areas and need estimates for these" ## **Example of forced displacement database** #### **UNHCR proGres Database:** - proGres database is developed by the United Nations High Commissioner for Refugees (UNHCR), which records all refugees defined as "individuals who are outside their country of origin and who are unable or unwilling to return there owing to serious threats to life, physical integrity or freedom resulting from generalized violence or events seriously disturbing public order" - ☐ The granularity of the proGres data varied from one country to another and it is not available for all countries. - At the end of March 2023, Cameroon had over 480,000 refugees and asylum seekers - Inside the refugee camps in Cameroon, the data was comprehensive and detailed, but it was only available at the adm3 level for the rest of the country. - With this level of the data, policy making decision, intervention and household survey will face critical challenges to reach these vulnerable population subgroups. Preparation for the geospatial modelling ## Data input: settlement maps EXAMPLE OF A SETTLEMENT MAP ASSESSMENT IN A UNHCR-LED SITE. ## **Data input: Covariate preparation** GEOLOCATING PROGRES REFUGEE RECORDS ## Modelling pipeline GRID-BASED MAPPING OF REFUGEES: A TWO-STAGE WORKFLOW ## **Outcome: covariates importance** COVARIATE IMPORTANCE IN MODELLING REFUGEES. CV STANDS FOR COEFFICIENT OF VARIATION. **Outcome: fine-resolution** refugee map **COMPARISON OF THE HIGH-RESOLUTION** MAPPING WITH UNHCR CONVENTIONAL REFUGEE MAPPING REPORT AND UNHCR **INTERACTIVE MAPPING** **OUTSIDE SITES** Timangolo Darin et al 2024 **INSIDE SITES** ## What for? GAIN FOR CRISIS ANALYTICS OF SPATIALLY DISAGGREGATING THE REFUGEE POPULATION ## **Example of IDP datasets in Nigeria** | No | Internal Displacement Monitoring Centre (IDMC) | International Organisation for Migration-
Displacement Tracking System (IOM-DTM) | | | | | | |----|---|--|--|--|--|--|--| | 1 | GeoJSON | XLSX | | | | | | | 2 | 142 records | 1637 records | | | | | | | 3 | 44 attributes (columns) | 109 attributes (columns) | | | | | | | 4 | Years: 2023, only | Years: 2014-2020, 2021, 2022,2023 | | | | | | | 5 | No sex/age data | No sex/age data | | | | | | | 6 | Reasons: Flood, Mixed disasters, Non-International armed conflict (NIAC), Other situations of violence (OSV), Rogue Wave, Storm | Reasons: Banditry and Kidnapping, Communal clashes,
Herdsmen attack, Insurgency, Natural disaster | | | | | | | 7 | Origin: file only https://www.internal-displacement-data/ | Origin: file and API https://dtm.iom.int/datasets | | | | | | ## **IDMC** data visualisation IDMC Raw Data Visualization (point layer) IDMC – Linking to Administrative Boundaries (Origin) IDMC – Linking to Administrative Boundaries (Destination) ### **IDMC data Pros & Cons** ## IDMC – Promising, but low granularity *Pros:* - Multiple Data Sources - ☐ Flexible Data Model (Multiple Origins and Destinations) - Origin/Destination Point Data - □ Abundant Attributes #### Cons: - ☐ Low Granularity - ☐ Limited Timeframe (currently, only 2023 for Nigeria) - ☐ Inconsistency in Origin/Destination Data - □ Complex Data Model ## **IOM-DTM** data visualization DTM Raw Data Visualization (point layer) DTM – Linking to Administrative Boundaries (Origin) DTM – Linking to Administrative Boundaries (Destination) ## Improve IOM-DTM granularity #### IOM DTM State/LGA/Ward Names – GRID3 Admin 1/2/3 Polygons | DTM Rou | In Date of Ass KI's | Population Type: Region State | SLGA | lWard | \SSite Name | wardname ^ | rdcc | Iganame | acoo | statename | |---------|---------------------|--------------------------------------|-----------|------------------|----------------------------------|----------------|------|-----------|------|--------------| | R12 | 45215 | 3 IDPs dispersed in North cent Benue | NLogo | IMBAGBER | l Elkyochi | waruname | Tucc | J iganame | aco | Stateriarrie | | R12 | 45210 | 2 IDPs dispersed in North cent Benue | N Makurdi | I NORTH BANK I | I E Akuundu Ityough | 1004 / Aboyade | lı . | Eti Osa | 2 | Lagos | | R12 | 45213 | 3 IDPs dispersed in North cent Benue | N Kwande | IYAAAV | TETuran Community Sec Sch | | | | | | | R12 | 45213 | 4 IDPs dispersed in North cent Benue | N Kwande | IYAAAV | l'EEnia Pri Sch | A O=: | ٨ | 0 1 | 4 | A l | | R12 | 45211 | 4 IDPs dispersed in North cent Benue | N Kwande | IMBAIKYOR | I ERcm Prim Sch Nyihemba | A Ozizor | A | . Ogbaru | 4 | Anambra | Aagba | 0 | Boripe | 3 | Osun | - 1. State DTM == State Adm1 -> define the state **polygon A** from Adm 1, - 2. LGA == LGA Adm1 and LGA within the **polygon A** -> define the LGA **polygon B** from Adm 2, - 3. Select all wards from Adm 3 within the *polygon B*, find: - a ward with an equal name, - If no, remove all non-letter symbols and convert to the lower case, - check for equal names (lower case) or the names with the Levenshtein distance < 4 and <30% of the string length. ## **Improve IOM-DTM granularity** # Geospatial Modelling ## **Gridded IDP output** IDPs Origin and Destination # Why is an IDP map at high resolution necessary? Our modelling output includes high-resolution IDP maps, which provide detailed insights into the distribution of displaced populations. For example, by overlaying satellite images, we can zoom in on specific areas to demonstrate the improved accuracy and granularity of our data. #### **High-resolution IDP maps offer several benefits:** - ☐ Flexibility to aggregate data to any geographic boundary. - Easier identification of IDP locations. - Enhanced utility for future national household surveys on IDPs. - ☐ Improved resource allocation and policy planning. - ☐ The IDP estimates can be break down by age and sex - ☐ Enhances outreach to a particular age and gender group (Maximise inclusion) ## **Future Research** #### Automatic preEA boundary workshops and trainings ## Thank You Contact: Sarchil Qader Email: <u>S.Qader@soton.ac.uk</u> Twitter: @SarchilQ WorldPop: @WorldPopProject https://www.worldpop.org/ ## **WorldFop**